Publications

Advanced search

Abstract

Erfaneh Gharavi, Hadi Veisi, Paolo Rosso. Scalable and language-independent embedding-based approach for plagiarism detection considering obfuscation type: no training phase. Neural Computing and Applications, 2019. Vol. 32 p. 10593.

The efficiency and scalability of plagiarism detection systems have become a major challenge due to the vast amount of available textual data in several languages over the Internet. Plagiarism occurs in different levels of obfuscation, ranging from the exact copy of original materials to text summarization. Consequently, designed algorithms to detect plagiarism should be robust to the diverse languages and different types of obfuscation in plagiarism cases. In this paper, we employ text embedding vectors to compare similarity among documents to detect plagiarism. Word vectors are combined by a simple aggregation function to represent a text document. This representation comprises semantic and syntactic information of the text and leads to efficient text alignment among suspicious and original documents. By comparing representations of sentences in source and suspicious documents, pair sentences with the highest similarity are considered as the candidates or seeds of plagiarism cases. To filter and merge these seeds, a set of parameters, including Jaccard similarity and merging threshold, are tuned by two different approaches: offline tuning and online tuning. The offline method, which is used as the benchmark, regulates a unique set of parameters for all types of plagiarism by several trials on the training corpus. Experiments show improvements in performance by considering obfuscation type during threshold tuning. In this regard, our proposed online approach uses two statistical methods to filter outlier candidates automatically by their scale of obfuscation. By employing the online tuning approach, no distinct training dataset is required to train the system. We applied our proposed method on available datasets in English, Persian and Arabic languages on the text alignment task to evaluate the robustness of the proposed methods from the language perspective as well. As our experimental results confirm, our efficient approach can achieve considerable performance on the different datasets in various languages. Our online threshold tuning approach without any training datasets works as well as, or even in some cases better than, the training-base method.